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Green's functions are obtained for a semi- inf in i te  straight l ine  with a uniformly moving boundary (10), 
(11), (12) and for a segment with boundaries moving uniformly and in paral le l  (16), (17), (18). For the 
solution a moving coordinate system is introduced and the method of  Laplace transforms is applied.  

It is well  known that  boundary-value problems for the heat  equation over regions with moving boundaries lead to 
systems of  Volterra integral  equations of the second kind [ t ,  2]. In view of the diff iculty associated with the solution of 
such systems, there have been introduced various ar t i f ic ia l  methods based on contour integrat ion [3-5]. However, no 
general  methods have been found. In the present work we shall derive Green's functions for the semi- inf in i te  straight l ine 
with a uniformly moving boundary and for a s t ra ight- l ine  segment with boundaries moving uniformly and in paral lel ,  and 
we will thus sett le the question of solving these two problems. In part icular,  one should note that Green's function for the 
first problem is obtained in closed form, and that for the second problem in a form analogous to well-known results for 
stationary boundaries. 

Green's functions for the semi- inf in i te  straight l ine.  Let us introduce a system of  coordinates which moves with the 
boundary according to •  = vt, so that g = z - vt [4] Assume, also, that g0 = z0 - vt0. 

Under these assumptions the required Green's functions must satisfy the differential  equation of heat  conduction 
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must be satisfied, 

Taking the Laplace transform (1) with respect to t, we obtain 

a d~---- r + v  d ~  
sG= 1 - ~  sgn (~0 ~) ~ ( [  - -  t0) ex  p ( - -  sto). (G) 

The general  solution of  (6) is of the form 
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(cont'd) 

for g > Go, and of the form 

/ [ (  1 - -  sto + ~o G-= A +  ~ q  exp  ~ ~.,.. 

(q ----- V'~--t- 4as) 

(8) 

for g < G0. 

Boundary condition (5), applied to (7), requires that 

A = [ e x p ( - st~ + v - ~o)]/2q.  

The constant B is found from the boundary condition at g = 0. 

1. Boundary condition of the first kind (2). Equation (8) leads to the following expression for the constant B: 

B, = - -  exp -- Sto -t- v 4- q ~o -- 
2a 

1 [exp(- -S to+ v - q  ~o)1. 
q 2a 

Substituting the expressions for A and B into (7) and (8) and applying the inverse Laplace transformation, we ob- 
tain, after several simple transformations, the following expression for Green's function: 

G(~, t; ~o, t o ) =  1 exp { [v(t--t~176 
2 ] / ~ a  (t - -  to) 4a  (t - -  to) 

1 e x p { @ ~ o  [ v ( t - - t ~ 1 7 6  
2 ] /~a ( t - - t  o) ~ -4a(t-- to) (9) 

In a stationary system of coordinates this expression reduces to the form 

G(z, t; Zo, to)= 

1 

2 V-=a(t--to) 

2 ] /~a (t--to) e x p .  - -  4a (t - -  to) 

(lo) 

2. Boundary condition of the second kind (3). Differentiating (8) and equating the derivative at g = 0 with zero, 
we obtain the expression for the constant B: 

q (v + q) 2a 
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After Laplace inversion, the solution to the problem is 

3. 

6(~, t; ~o, to)= 

1 
"U" 
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v (exp 
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2 ]/~a(t to) exp --  - + - -  4a (t - -  to) 

v Iv ( t -  to) + ~ + ~ol ~ ] 
to) exp - -  ~ - -  ~ -- a 4a (t -- to) ) 

v-~-~o) erfc[  v ( t - - t o )+~+~o  ] 
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Boundary condition of the third kind (4). By analogy with the preceding cases it can be shown that 

B3-- l~[exp(  -st~ 2a ~o)?-- 
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and that after Laplace inversion the solution is 

(~ 1) 
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-- ~ 4a (t - -  t o) 
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(12) 

In conclusion, note that one can easily derive from these formulas the well-known Green's functions for the semi- 
infinite straight tine with a stationary boundary. 

Green's functions for a straight segment with boundaries moving uniformly and in parallel. Taking into account the 
paratlel motion of the boundaries, we shall use the same method of moving coordinates as in the preceding case. In the 
moving system of coordinates the problem reduces to solving the heat equation (1) under the (general) boundary condi- 
tions 

( ~ - - ~ I ~ ) G ( O ,  t; ~o, t o ) = O ,  

~2 -I- ~ G (l, t; ~o, to)= o. 

(13) 

(14) 

As in the preceding case, the general solution in the transform space is of  the form (7) for g > g0, and (8) for ~ < 

< gO' 

The constants A and B are determined by the boundary conditions at [ = 0 and g = l, which form a system of two 

equation leading to 

I( A ( s ) =  Z 2a 2 a  - -  
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Substituting A and B into (7) and (8) we obtain Green's function in the transform space in the form of a ratio of  
two functions. Inverting the transform we use the expansion theorem. The transform of  Green's function is a s ing le -va l -  
ued function of s with a denumerable  set of  s imple poles lying on the negat ive  real  axis. Thus i t  is convenient  to denote 

(q/2a)  i by 7, whereupon the denominator  of the transform l~ecomes 

4ay [(ala~ -t- ~ 1  ~ ~x~to ~ ~1~2~ 2 -  ~ 2 y  ~) sin y I + 

+ (~2  + ~ )  y cos y l] (to = v/2a), 

and the numerator becomes (for g > ~0) 

2 [(~1~, + ~ , 9 ~  - -  ~19 , .  - -  ~,~,.,~ + ~,~2V ~) COS V (l - -  ~0 - -  ~) + 

+ (~2~t + ~2)  Y sin y (I + ~o - -  ~) - -  

- -  ( ~  + ~ - -  ~1~ |  - -  ~ 1 ~  ' - -  h ~ ;  ' )  c o s  v (l + ~o - g)l x 

X exp (| (~0 --  g)-- sto). 

Henceforth our discussion of  the problem shall depend on the type of boundary condition under consideration. 

1. Boundary conditions of  the first kind at both ends of  the segment: G(0, t; g0, to) = G(l, t; go, to) = 0. 

In this case 3 1 = J31t = 0, and 

G(i,  t; ~o, to)=- 5- exp (~o--~) E sin 
n--1 
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Xsln-WZ~ exp --  a - t -  ( t - - to )  . 
l \ ~  4a  

In a stat ionary system of  coordinates this solution can be written in the form 

2 [ v ( z o _ z )  I X  a(z, t; Zo, to )=- / -  e x p - ~ - -  a 

X~si n ~n(Zo--Vto) . ~n ( z - - v t )  X 
2. sm X 

t 1 
n=l 

(15) 
(cont'd) 

2 ,  

to) = 0. 

In this case a i = a 2 = 0, and 

X e x p  - -  - - - = - - a  - -  ( t - - t 0 )  . 
4a 

0 
Boundary conditions of  the second kind at both ends of  the segment:  

0g  
G(0, t; to, t o ) =  

0 O(l, 
og  
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t; So, 

G(~, t; to, t o ) = - ~ [ e x P o ~ ( ~ o - - ~ ) l  X 

1 [~2s in~n~o  sin ~ n ~  
)< m2 3- ~ n2/12 l " l ' 

n=l 

n 2 ~2 ~ n ~o ~ n 
+ - -  c o s - -  cos § 

12 l t 

~ ~ 1 7 6  (~ ,~ 0). (17) 
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8. Boundary conditions of the third kind at both ends of the segment: (hl - -  ~-~ ) G (O ' r t0, t o ) = ( h 2 3 . 0 ~ - ) ' ,  

�9 c ( z ,  t; to) = o .  

Here h 1 = cqfl5 I, h:a = c~/B2, and 

G(L  t; ~o, t o ) = 2 e x p ~  ~ )X  

Co 

\~ ~ y [(hi + h2) (y 1 - -  sin 21; I/2) + 21; sin 21; 11 " i  ) (  / \ \  

Y 

)< {(hi + h2) sin I; (1 - -  ~) sin 1; (1 - -  ~0) 3. sin y l [y cos y (l - -  ~ - -  t0) - -  

- -  (hi 3- ~) sin y (t - -  ~0 - -  2)] } exp  [ - -  a (y2 + m2) (t - -  t0)], 

where the summation extends over al l  positive roots of  the character is t ic  equation 

(18) 

(hlh~ 3.h~ ~o -- hi m - -  = 3  _ _  I72) s iny t + (hi + h2) y cos y I = 0. 

Green's functions for other boundary conditions can be obtained in an analogous manner. 
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